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This publication contains three separate articles on different aspects of model rocket flight.

One article explains how the heights reached by model rockets can be determined. Instructions on

building and using your own altitude determining device are included, as well as an elementary explanation of

the theory involved.

The second article provides facts and examples for helping the students build better concepts about

relative velocities and speeds.

The final article about acceleration provides more advanced information on speed, acceleration and

distance traveled per unit of time.
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“My rocket went higher than your
rocket!”

“Did not!”

“Did too!”

“Did not!”

“Did!”

Does this dialogue sound familiar? How
often have you heard two other rocketeers
arguing about whose model went higher?
Sheer lung power is not enough to deter-
mine whose rocket went the highest.

One of the easiest ways to judge rockets to
find which is the “best” is to see which goes
the highest with a certain engine type. To be
really scientific about determining whose rock-
et went the highest, even careful “watching”
may not be adequate.

Easy Altitude Calculations

Reliable altitude measurements are easy
to make. For most purposes, a simple calcula-
tion using only three numbers is all it takes to
find the altitude of a model rocket.

First, measure to find how far from the
launcher you are going to stand when the
rocket is launched. If you have a good idea
of how high your rocket should go, measure
to find a place the same amount of distance
from the launcher and stand at this position
(baseline). When in doubt about how high a
model will go, checking tables of predicted 

performance, guessing from past experience
or using the Estes Altitrak™ are the best
methods of predicting the height your rocket
will reach.

Measuring this BASELINE can be done
with a meter stick (slightly over a yard-39.37
inches), a yardstick if you can’t get a meter
stick or a metric tape. If you can’t get a better
measuring device, pace off the distance.
To use pacing for measuring the baseline,
first measure how far you go each time you
take a step, then figure the number of steps it
will take to go the necessary distance.

The second number you need is the
ANGULAR DISTANCE the rocket travels
from launch to apogee (highest point of
flight). This is measured in degrees of angle. 

The angular distance is determined by 

measuring the angle between the rocket’s
position on the launch pad (the tip of the
nose cone) and the highest point (apogee)
reached by the rocket.

Homemade Altitude Measuring Device

Sighting tube 
(can be soda 
straw)

The measuring device used to find this
angular distance can be a homemade
“sextant” or the Estes Altitrak™. 

When using the homemade altitude
measuring device, angular distance is found
by subtracting the reading taken (angle
marked) of the rocket at apogee from 90˚.

If you are using a homemade altitude
measuring device, a sighting must be made
on the tip of the rocket on the launch pad
and then the angular error noted (difference
between 90˚ mark and the angle marked by
the string). This is an error you will have to
allow for when measuring  the angular
height reached by each flight.

In this example--
90˚ - 86˚ = 4˚ error.
Subtract four degrees
from angular distances
measured for each flight.

Once the angular distance moved by the
rocket is known, consult a trigonometry
table to find the TANGENT of that angle.



The final step to determine the altitude
reached is to multiply this value by the
length of the baseline. The product is the
height reached by the rocket.

Now, calculate the height reached by
this rocket.

Let’s determine the height reached by
another rocket. The information given is
similar to the data given to the data reduc-
tion crew at a model rocket contest.

If your calculated altitude was not accu-
rate, recheck your calculations to find and
correct your error. Once you are able to
correctly find the altitude, find the altitudes
for the next two problems to be sure you
know how to calculate altitudes.

Explanation of Tangents

You may have begun to wonder, “What
is this ‘tangent’ that we’ve been using?” A
tangent is a ratio (a numerical relationship).
When working with a right triangle (a tri-
angle with one “right” or 90˚ angle), the
tangent is the ratio between the length of
the opposite side and the length of the
adjacent or nearest side.

The tangent of angle A is the ratio of
the length of opposite Side a to the length
of the nearest Side b. The longest side of a
right triangle is always called the
hypotenuse. The equation form of the tan-
gent of angle A is written:

Tangent of ∠A =  opposite side
adjacent side

Notice how this triangle resembles the
situation when you are tracking a rocket.
The rocket is launched from C and reaches
apogee at B. The length of Side b is meas-
ured and angle A is measured. To find the
length of Side a (the height reached by the
rocket), we multiply the length of Side b
(baseline) times the tangent of ∠ A (ratio
of length of Side a to the length of Side b). 

To get a better idea of how this works,
consider this situation: A flagpole casts a
shadow 10 meters long. The angle the
shadow and the tip of the flagpole make
with the ground is measured and is found
to be 45º.  What is the height of the flag-
pole?

The flagpole in the picture appears to
be about as long as its shadow. Checking
the Tangent Table, the tangent of 45º is
1.00. Multiplying 10 meters times 1.00
gives a product of 10.0 meters. Our esti-
mate turns out to have been accurate. A
quick examination of the table shows that
rockets reaching angular distances of under
45º do not go as high as the baseline is
long, but those going over 45º reach alti-
tudes greater than the baseline’s length.

Two points to remember- 

1. Rockets flown on windy days will 
usually not go straight up and will
not go as high as they could have
gone.

2. To minimize errors in altitude 
measurements for rockets going 
into the wind (“weather cock
ing”), station the tracker at right 
angles to the wind flow.

The rocket moves into the wind, caus-
ing a slight increase in the length of the 

View Looking Down on Launch Area

baseline. This introduces small error. The
greater this “weathercocking”, the greater
the error. However, calculations are still
based on the original measured baseline, so
the altitude measurements computed will
actually be a little low. Since every rocket
launched from the launch pad will have
approximately the same problem with the
wind, reasonably accurate comparisons can
be made between altitudes reached by dif-
ferent flights.

If the tracker were stationed either
upwind of the launcher (into the wind) or
downwind of the launcher (away from the
wind ), the amount of change in length of
baseline caused by weathercocking would
be fairly great as compared to the change in
baseline for a tracking station at right
angles to the wind.

For more information on altitude track-
ing, refer to Estes Technical Report TR-3.
Altitude Tracking in “The Classic
Collection”.

tangent of 30˚ = .58 (from

tangent table)

Baseline x Tangent of angular 

distance = Height

200 meters x .58 = 116 meters

Angular

Distance

Angular Dis-

tance = 50˚

The rocket rose 238 meters.
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Side b (adjacent side)

B

A C

Baseline = 250 meters

Angular Distance = 70˚

Altitude reached = _________ meters*

Baseline = 100 meters

Angular Distance = 53˚

Altitude reached = _________ meters*

Baseline = 500 meters

Angular Distance = 20˚

Altitude reached = ______ __ meters*

Reprinted from MRN Vol. 9, No. 3.

Tracker Launcher
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A brief hiss of escaping gasses, a blur of
motion and the rocket streaks skyward. Your
model rocket really moves!

Have you ever stopped to wonder just
how fast your model rocket travels? You
have noticed that a large, relatively heavy
rocket takes off fairly fast with a less-pow-
erful engine, but doesn’t rise too high before
the propellant is gone. Then the delay and
smoke tracking element of the engine starts
to produce a trail of smoke so you can
watch your rocket as it coasts upward.  Soon
it coasts to apogee, and if you selected an
engine with the right delay, the parachute
blossoms out just as it starts to tip over and
begins to fall toward the ground.

If  you observed carefully, you noticed
that the rocket was gaining speed very
quickly as it started on its flight into the sky.
When you launched a small, relatively light-
weight rocket with a powerful engine, you
noticed that it took off very fast. Of course
it went much higher than the heavy rocket
with the less powerful engine.

In fact, you may have had the experi-
ence of launching a very small, light rocket
with a powerful engine and actually loosing
sight of it until the delay element began to
leave a smoke trail high in the sky.

To produce enough thrust to move a tiny
rocket, like a Mosquito™ with a C6-7
engine, to an altitude of 1700 feet in less
than nine seconds (1.70 seconds of thrusting
flight and 7 seconds of coasting flight), the
small rocket’s engine must cause the rocket
to move very fast. An average speed for this
upward flight would be 195.4 feet per sec-
ond (1700 feet divided by 8.7 seconds).

Actually, the rocket moves faster and
faster as the engine is thrusting. At the end
of this thrusting portion of the flight (1.7
seconds into flight time from liftoff), the
model rocket is traveling at its maximum
speed. This maximum speed is 670 feet per
second or about 3.5 times as fast as the
average speed.

After the propellant is gone, the rocket
is moving upward without a thrust force
pushing it on up. The force of gravity acts to
slow the rocket down.

Your rocket, while moving at its maxi-
mum velocity of 670 feet per second, is
traveling very fast. To convert this speed
into the speed you are familiar with estimate
this speed as miles per hour. Put your
answer in the space below.

A speed of 670 feet per second is about
456 miles per hour. Your model rocket was
really moving by  the time the propellant
was all gone.

When you fly a larger, much heavier
model rocket with a smaller engine, as a 
Big Bertha with an A5-2 engine, it reaches a
maximum velocity of 84 feet per second
during its 2.8 second flight to parachute
ejection. Multiply by the conversion factor
of 0.68 to convert from feet per second to
miles per hour. What was the maximum
speed of this rocket in miles per hour?

The rocket reached a maximum speed of
about 57 miles per hour.

This speed is certainly not as fast as the
457 miles per hour which the other rocket
reached. When you consider the fact this
rocket with its engine weighed over 2.5
times as much as the other rocket (2.84
ounces as compared to 1.075 ounces), had
an engine with one quarter the power (total
impulse) of  the other rocket’s engine and
had much greater drag, you should not be
surprised that the heavy rocket only reached
a speed of about one-eighth as great as that
reached by the smaller rocket.

A = Altitude

B = Velocity
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A jet plane traveling at the speed of
sound near sea level goes about 750 miles
per hour. This is about 1100 feet per second.
A speed of 750 miles per hour is quite
impressive. For example, a plane traveling
from New York City to St. Louis, Missouri
or from Denver, Colorado to Saskatoon,
Saskatchewan, Canada in one hour.

We don’t really think of this as being
very far, but 750 miles (the distance a plane
can go in one hour) is equal to going the
distance all the way around a typical city
block in 3,300 times in one hour.

A man walking or marching at a steady
pace can average about three miles per hour.
To convert this speed to feet per second,
multiply the number of miles per hour by
1.47. Write this speed in feet per second in
the space below.

A speed of three miles per hour equals
4.41 feet per second.

This speed isn’t very fast, but it is in the
range of speed with which you have person-
al contact. A very fast racer can run 100
yards in ten seconds. This is how many feet
per second? 

This speed is 30 feet per second (100
yards x 3 feet = 30 feet per second). This is
a very fast speed for a man to move under
his own power. How fast is this in miles per
hour?

This speed is about 20 miles per hour.
This is one of the fastest speeds a human
can achieve on land through the use of his
own muscles. One of the slowest model
rocket launches produces a velocity which is
nearly three times this fast.

Satellites traveling around the Earth vary
in velocity from about 4.85 miles per sec-
ond (at an altitude of 100 miles) to about
1.91 miles per second (in synchronous or
24-hour orbit). These speeds are so fast that
it is difficult to realize how fast they really
are. Remembering  that a walking man can
travel at a velocity of 4.41 feet per second, a
fast runner can sprint (dash) at 30 feet per
second for short periods, a model rocket can
move at 670 feet per second, a jet traveling
at the speed of sound goes 1100 feet per
second, calculate the speed in feet per sec-
ond for a satellite orbiting Earth at an alti-
tude of 100 miles.

To convert miles per second to miles per
hour, multiply the speed in miles per second
by 3600 (the number of seconds in an hour).

4.85 miles per second x 3600 seconds
per hour = 17,460 miles per hour.

17,460 miles per hour x 1.47 = 25,666.2
feet per second.

This speed, about 25,700 feet per sec-
ond, is over twenty-two times the speed of a
jet plane flying at the speed of sound.

To attempt to give you a better under-
standing for these speeds, realize that it
takes you about-

--68 seconds to walk the length of an
average city block (300 ft.),

--10 seconds to run the same distance,

--0.45 seconds for a “hot” model rocket 
to go that far,

--0.27 seconds for a jet plane flying at 
the speed of sound or

--0.01 seconds for a satellite in an orbit
of 100 miles altitude to go that far.

These numbers are given, not  to make
you feel that model rockets go slow (they
don’t), but to help you understand how their
speeds compare to other velocities of
objects with which you may someday work.
If you have a strong desire and develop the
necessary skills through study and careful
practice, maybe you will someday be work-
ing with planes, full-scale rockets and satel-
lites with velocities in this range. Model
rocketry is one way to practice elements of
some of the skills you will need to develop
to become an aerospace scientist.

feet per second

4.41 (walking

30 (short sprint)

670

1100

25,666.2

Object

A man

A model 

rocket

A jet plane

Earth orbiting

satellite

(100 miles)

TABLE OF SPEEDS
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Acceleration is the process of speeding
up. If something begins to go faster it accel-
erates.

Your model rocket sitting on the launch
pad is not accelerating. When it starts to
move, it accelerates. As long as its speed is
increasing, the rocket is accelerating.

To be technical, an object which is gain-
ing speed is undergoing positive accelera-
tion. A moving body which is slowing down
is undergoing negative acceleration.
Negative acceleration is sometimes called
deceleration.

A good example of acceleration occurs
when you throw a ball straight up into the
air. The ball is going very fast as it leaves
your hand.

Once the ball leaves your hand it does
not go any faster, in fact, the ball start slow-
ing down as it rises.

What are the two forces acting on the
ball to slow it down?

Two forces slowing down the ball:

1.

2.

The two forces are gravity and drag
(friction between the ball and the air
through which it traveling).

The ball soon loses all of its momentum,
stops going up and starts to fall back to the
ground. The rate at which the ball gains
speed (acceleration) as it falls is about 32
feet per second per second (32 ft/sec2).

This expression (32 feet per second per
second) means that a falling object near the
ground falls 32 feet per second faster for
each second that it falls. In other words, a
ball dropped from the top of a tall building
will fall 16 feet during its first second of
fall. Does this surprise you? Let’s take an
example to help us understand this.

If a car travels for one hour and begins
its trip from a standing start and very slowly
and steadily accelerates until it is traveling
at a rate of 60 miles per hour, what was the
car’s average speed during this hour of trav-
el?

The car’s average speed was
60 + 0 miles per hour or 30 miles per hour.

2

A car traveling at the average rate of 30
miles per hour for one hour travels 30 miles
in that hour. A ball accelerating at the rate
of 32 feet per second travels 16 feet in the
first second of its fall.

How far does a falling object travel dur-
ing two seconds?

To simplify calculations we can use for-
mulas instead of having to think through all
of the steps in a problem each time we need
to solve another problem of the same type.
For example, the formula for determining
the average speed of a body is--

No

Acceleration

Positive

Acceleration

Negative

Acceleration

Average Speed = final speed + original speed
2

= 64 feet per second + 0
2

= 32 feet per second

Distance Traveled = Average speed x Time in motion

= 32 feet per second x 2 seconds

= 64 feet 

How far did the falling ball travel during
the second one-second of its fall?

Distance Traveled in the Second
Second = Total distance traveled - Distance traveled

in first second

= 64 feet - 16 feet

= 48 feet

Average Speed = final speed + original speed
2 

Average Speed =

v = v2 + v1

2

v  = average veloci ty

v2 = final  veloci ty  (speed)

v1 = or iginal  veloci ty

The formula for determining the dis-
tance an object falls during a given time is--

s = 1/2 g t  2

s = dis tance

g = accelerat ion due to  gravi ty

t = t ime
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How far does a falling body travel dur-
ing the third second of its fall?

s  = 1/2 gt2

s   = 1/2 x 32 feet /second2 x (3 seconds)2

= 1/2 x 32 feet /second2 x 9 seconds2

= 1/2 x 32 feet  x  9

= 16 x 9 feet

= 144 feet

The ball falls 144 feet in three seconds. Since
the ball fell 64 feet in two seconds, the ball falls 80
feet during the third second of its fall (144 feet
minus 64 feet).

A falling object keeps accelerating
because of the force of gravity acting on it
until the friction of the air moving past the
falling body prevents the object from falling
any faster. When this maximum speed is
reached the object ceases to accelerate and
falls at its terminal velocity.

LET’S TRY A PROBLEM

Using the following formulas (some are
simplified to avoid using higher mathemat-
ics) we can determine some values for
accelerations and velocities for model rock-
ets. The values given are based on theoreti-
cal “no drag” conditions.

ALPHA FLIGHT ANALYSIS

Using the above formula for velocity,
determine the burnout velocity of an Alpha
launched using an A8-3 engine. The Alpha
weighs 0.8 ounces without an engine. With
an A8-3 engine the Alpha weighs 1.37
ounces at liftoff. The weight of propellant in
an A8-3 engine is 0.11 ounces giving an
average weight of 1.32 ounces during the
thrust phase of the flight. The A8-3 engine
thrusts for 0.32 seconds and has a total
impulse of 0.56 pound-seconds. (These val-
ues may be found in or calculated from
information in the current Estes catalog.)

First find the average force, then use this
force in the velocity formula to find the final
velocity.

The expression
gives you an idea of the number of  “gravi-
ties” the rocket experiences in upward flight
during acceleration. The “1” is subtracted in
this expression to allow for the pull of
Earth’s gravity on the rocket. This rocket
develops a fairly high velocity by the end of
the thrusting phase of flight.

What will be the velocity developed by the
same Alpha launched with a C6-5 engine?

This velocity (716.45 feet per second)
developed by the Alpha with the C6-5
engine is more than triple the velocity
(206.95 feet per second) which was devel-
oped by the A8-3 engine. Notice that the
thrust and therefore the acceleration in “g”s
produced by the C6-5 engine (13.17 g) is
less than that produced by the A8-3 engine
(20.21 g), but the maximum velocity is
greater when using the C6-5 engine because
the burn time for this engine is greater.

I wonder what the acceleration would be
in “g”s for the Big Daddy™ with  a D12-5
engine? Hmm...

(            )28.0 oz.        
1.32 oz.

total impulse

burn time

16 oz.

1 lb.

Reprinted from MRN Vol. 10, No. 2.

}
conversion factor

A graph can present a lot of infor-
mation quickly. Studying a graph can
sometimes help you to understand
something that may be hard to under-
stand otherwise.

Examine the graph for the distances
a falling body travels during the first
few seconds of its fall. This graph repre-
sents the distance a body falls under the
constant acceleration of gravity
(neglecting air friction).

GRAPHS
To help understand the velocities

which falling objects can develop,
(neglecting air friction) examine a graph
of the velocities developed by freely
falling objects. These graphs are based on
results obtained by use of these formulas-
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To find the actual velocities which
your birds will attain when allowance for
air drag is made, use the Estes book
“Altitude Prediction Charts” (EST 2842).

= (21.21-1)(32ft./sec.2)(0.32 sec.)

= (20.21) (10.24 ft./sec.)

= 206.95 ft./sec.

v2 = (32 ft./sec.2)(0.32sec.)-1

Force = x
(thrust)

v2 = gt

wav = average weight of rocket
F = force (average thrust of rocket 

engine)
g = acceleration due to gravity

(32 ft./sec.2 )
t = time in seconds

(          )F        
1wav

F  = 0.56 lb. - sec.  x 16 oz.
0.32 sec. 1 lb.

= 1.75 x 16 oz.
= 28.0 oz.

(          )F        
1wav

v2 = gt(          )F        
1wav

v2 = a t

s   = v1 t + 

a   = acceleration
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